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The capability of the parameters derived from waveform data in discriminating objects is assessed and
the effect of the relative calibration of full-waveform data in discriminating land-cover classes is evaluated.
Firstly, a non-linear least-squares method with the Levenberg–Marquardt algorithm is used to fit the return
waveforms by a Gaussian function. Gaussian amplitude, standard deviation, and energy are extracted.
Secondly, a relative calibration method using the range between the sensor and the target based on a
radar equation is applied to calibrate amplitude and energy. The change in transmit pulse energy is also
considered in this process. A support vector machine classifier is used to distinguish the study area into
non-vegetated area (including roads, buildings, and vacant lots), grassland, needle-leaf forests, and broad-
leaf forests. The overall classification accuracy ranges from 79.33% to 87.6%, with the combination of
the two groups of the three studied parameters. Calibrated data classification accuracy is improved from
1.20% to 6.44%, thus resulting in better forest type discrimination. The result demonstrates that the
parameters extracted from the waveforms can be applied effectively in identifying objects and that relative
calibrated data can improve overall classification accuracy.
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Small-footprint airborne LiDAR systems currently have
two types. The first type is the traditional discrete Li-
DAR system which only provides 3D coordinates and in-
tensity information. The second type is the full-waveform
LiDAR system. Compared with traditional discrete Li-
DAR systems, full-waveform LiDAR systems digitize and
record the entire backscattered signal of each emitted
pulse as a function of time, thus providing more controls
to end users for managing and interpreting raw data dur-
ing post-processing.

Small-footprint airborne LiDAR data classification is
primarily focused on distinguishing ground points from
non-ground points. In this case, discriminating ground
points is based on elevation information; hence, several
filtering methods that employ altitude have been devel-
oped for obtaining accurate topographic data[1]. How-
ever, with the increasing demand on LiDAR applica-
tions, geometry-based filtering methods for acquiring
terrain information are inadequate for meeting the re-
quirements of non-ground point classification. By con-
trast, a number of researchers have analyzed geomorpho-
logical structure mine information from geometry data
for classifying land cover. Feature extraction and ob-
ject recognition/reconstruction methods have been intro-
duced in LiDAR data processing. These methods include
height texture measurements and a mathematical mor-
phological approach for separating man-made and natu-
ral objects[2], a non-parametric technique of mean shift
for the power line model[3], and an object-based analysis
method for application in urban areas[4]. These stud-
ies have mainly focused on human settlements, but us-
ing these methods for subclassifying vegetation areas is
difficult. By contrast, geometry from LiDAR data is
often used to provide additional classification input or

decision layer when combined with a multispectral or hy-
perspectral image[5−7]. However, the disadvantage of this
technique is that the registration and scale conversion be-
tween LiDAR and optical data should also be considered.

The emergence of small-footprint full-waveform Li-
DAR provides a new capability for classifying land cover.
Width, amplitude, and energy are the most important
extra-physical properties from full-waveform data[8] that
can be explored for identifying ground and vegetation
point[8−10], deriving higher quality terrain models[11],
and particularly, classifying tree species[12−16]. However,
most studies combing geometry information may affect
the assessment of the classification capability of the pa-
rameters derived from waveform data. Moreover, few
studies consider full-waveform data calibration in clas-
sification.

LiDAR return echo is affected by numerous factors in-
volving emission pulse frequency, divergence angle, pulse
width, scan angle, atmosphere, flight speed, distance,
terrain, etc. These factors must be eliminated to evaluate
target radiation characteristics correctly. The influence
of certain factors can be assumed as constant in a small
area. Then, return waveforms can be simplified to reflect
the reflective properties of the targets. However, lack of
calibration makes these methods difficult to employ on
a large scale because of the influence of widely varying
factors. Therefore, calibrating received waveforms is nec-
essary for object recognition and automatic classification.

A number of studies have attempted calibrating Li-
DAR data. By contrast, several scholars have conducted
research on factors influencing calibration based on Li-
DAR mechanism, such as reviewing certain basic physi-
cal concepts used by the remote-sensing community[17],
the specific influence of the calibrated results of data-
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driven and model-driven methods, and the effect of in-
cidence angles on buildings[18,19]. Meanwhile, a number
of researchers have studied calibration methods through
experiments, such as using bright natural targets or man-
made objects with known reflectance to correct the re-
turn signal[20,21]. However, current LiDAR data calibra-
tion theory is not perfect, and a unified standard has not
yet been developed.

The objectives of the present study are as follows: 1)
to calibrate the Gaussian decomposition results of full-
waveform data using the range and normalization of
transmitted pulses; 2) to evaluate the capability of pa-
rameters derived from waveform data in discriminating
objects without any geometry information; 3) to explore
the effect of landscape identification after calibration.

The study area is located in the Lingshui National Na-
ture Reserve, Yichun City, Heilongjiang Province. The
center geographical coordinates are approximately 128◦

53′ 20′′ E and 47◦ 10′ 50′′ N, with elevation ranging from
280 to 707 m above the mean sea level and a slope of
less than 40◦. More than 98% of this area is covered by
forest. Land cover types include needle-leaf forest, grass-
lend, and non-vegetated area (including roads, buildings,
and vacant lots)

LiDAR data acquisition was conducted during the sum-
mer of 2009 at a leaf-on condition using the a scanner
(LMS-Q560, Riegl, Austria) with a full-waveform dig-
itizer. The waveform digitizer records both transmit-
ted and backscattered pulses. Ten flight lines with ap-
proximately 80% overlap were designed to cover 1 600
ha of the center of the nature reserve. Data collection
configuration results in a point density of approximately
3 points/m2. The charge-coupled device (CCD) image
consisting of three bands (red, green, and blue (RGB))
with a resolution of 20 cm was simultaneously acquired,
geometrically corrected, and orthorectified based on a
digital surface model.

A ground survey of 21 plots was conducted simultane-
ously, and more accurate data based on individual tree
locations were collected from July 2010 through August
2010. The 21 sample plots were located via differential
global positioning system (DGPS). Each tree in several
typical plots, as well as 981 single trees were surveyed to
acquire the precise position of each tree via DGPS and
electronic total station. The average position error is 0.48
m, whereas the maximum error is 0.89 m.

A laser pulse shape and the output signal of the de-
tector at different times can be generally regarded as a
Gaussian shape[22]. Therefore, the small-footprint wave-
form can be modeled reasonably by a series of Gaus-
sian pulses[23], and several more parameters can be
extracted[24]. A return waveform can be decomposed into
its Gaussian components in this form:

f(x) = b +
n

∑

i=1

aie
−(x−xi)

2/2σ2

i , (1)

where f(x) represents the received waveform, b is the
noise level, and n is the number of Gaussian compo-
nents. ai, xi, and σi denote the amplitude, position, and
half width (standard deviation) of each Gaussian, respec-
tively. In this letter, a non-linear least-squares method
with the Levenberg–Marquardt algorithm[25] was used to

decompose the waveforms.
The LiDAR equation (as follows)[24] shows several fac-

tors affecting the received echo signal of LiDAR:

pr =
ptDr2

4πR4β2
t

ηsysηatmσ, (2)

where pr represents the received power, pt is the transmit-
ted power, Dr is the receiving aperture diameter, R is the
range between the sensor and the target, βt is the beam
divergence, ηsys is a system factor, ηatm is an atmospheric
transmission factor, and σ is the backscatter cross sec-
tion. These factors include firing pulse energy, receiver
aperture, distance between the target and the aircraft,
backscattering cross section or scattering coefficient, at-
tenuation coefficient of a system, and atmosphere. A
number of studies have shown that waveform energy and
amplitude decrease with the increasing range between the
sensor and the target, which is considered to be the most
important influential factor of waveform data. In this let-
ter, the LiDAR system of Riegl has the peculiar function
of recording transmitted pulses. Several differences have
been found by comparing the transmitted pulses. The
differences are primarily reflected in energy changes, and
the pulse widths are almost the same. Thus, the range
between the sensor and the target, as well as the changes
in transmitted pulses, are considered during relative cal-
ibration, whereas other factors are disregarded as con-
stant because they are difficult to obtain (such as the
attenuation coefficient of a system and the atmosphere)
or do not change a flight plan (such as the receiver aper-
ture).

A linear proportional relationship between the trans-
mitted pulse energy and the return waveform energy
must be assumed to simplify the effect of transmitted
pulse energy variations to return echo. Thus, the nor-
malization factor can be described as

CIndex =
pt sta

pt
, (3)

where CIndex is the normalization factor, pt sta is the
standard transmitted pulse energy, and pt is the trans-
mitted pulse energy. In this letter, pt sta is set as the
average of all transmitted pulse energies.

According to the LiDAR equation and the different
scattering properties of objects, the relative calibration
formula based on the range can be described as (refers
to Xu et al.[26] for more details regarding the formula
derivation)

pcal = pr × CIndex ×

( R

Rcal

)n

, (4)

where pcal is the calibrated energy, pr is the energy of
the decomposed Gaussian pulse, R is the range from the
sensor to the object, Rcal is the reference range, and n is
the calibration factor with the values of 2, 3, or 4.

In the correction process, the value of n was varied
from 2 to 4 at a step of 0.01. The correlation coefficient
of the calibrated values and the corresponding real range
was calculated. Then, the value of n at the minimum
correlation coefficient was selected as the calibration fac-
tor. Rcal was set to have the same value of mean range
for all flights.
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Table 1. Extracted Waveform LiDAR Parameters

Band Waveform Features Band Waveform Features

of All of the Returns of the First Return

1 Average Amplitude 6 Average Standard

Deviation of First Return

2 Average Energy 7 Average Amplitude

of First Return

3 Average Standard 8 Average Energy

Deviation of First Return

4 Average Calibrated 9 Average Calibrated

Amplitude Amplitude of First Return

5 Average Calibrated 10 Average Calibrated Energy

Energy of First Return

Each calibrated amplitude of the Gaussian decomposi-
tion result can be computed as

ai cal = ai × CIndex ×

( R

Rcal

)n

, (5)

where ai cal is the calibrated amplitude and ai is the
amplitude of the Gaussian decomposition result.

The Gaussian decomposition results were converted
into a multiple-band image while keeping the point cloud
information as high as possible. Based on an overall
consideration of various objects scales, and the density
of LiDAR data collection, an optimum of 4-m2 pane
was introduced to rasterize data, and each grid was as-
sessed using a combination of waveform parameters and
other statistical values. These values include the av-
erage energy, amplitude, width, calibrated amplitude,
and calibrated energy. Then, the classified LiDAR data
were transformed into a traditional problem for digital
image processing. After the rasterization of the Gaus-
sian decomposition waveform data, six combinations of
the three parameter groups were generated. Finally, the
10 most important variables were selected during the
preclassification process and listed in Table 1. The 10
parameters were divided into two major categories: pa-
rameter mean values of all returns and parameter mean
values of the first return. Furthermore, uncalibrated and
calibrated data were included in each category.

A supervised method of support vector machines
(SVMs), which can account for both spectral information
and spatial features[27], was applied to classify LiDAR
data. Then, hierarchical classification combined with
SVM was implemented to improve classification accu-
racy. The hierarchical classification method was imple-
mented in two steps. Firstly, the entire image was divided
into two major categories, namely, tree and non-tree.
Secondly, the tree areas were further divided into needle-
leaf and broad-leaf forests, whereas the non-tree areas
were further divided into grassland and non-vegetated
area using the SVM classifier. In the first step, almost
all supervised and unsupervised methods achieve good
classification accuracy (over 95%). In the second step,
only the band combination of 1, 2, and 3 was adopted in
the grassland and non-vegetated area classifications be-
cause this combination provides the highest classification

accuracy. However, different band combinations (3, 4,
and 5; 6, 7, and 8; 6, 9, and 10) were employed in conifer
and broad-leaf identification. Regions of interest (ROIs)
are defined based on field collection and an exactly
matching CCD image. Field data, including single-tree
reference information and plot data, were applied in se-
lecting ROIs for conifers and broad-leaf trees. And only
the first two crown classes (dominant and codominant)
and crown width greater than 4 m of single-tree refer-
ence data were considered as reference data. Several
ambiguous crown border areas in the aerial image were
also neglected. The CCD image was used to select the
non-vegetated area and the grassland. Approximately,
one-third of the ROIs for each type of land cover had
been randomly selected as training data, and the others
were defined as the validation set.

The Gaussian decomposition method was applied to
the three flight tracks over the study area. The numbers
of point clouds and return echoes derived from the Gaus-
sian decomposition are greater compared with those from
the real-time echo extraction process of the system. The
decomposed waveform data were transformed into 3D
points with several related attributes from each decom-
posed Gaussian waveform, including position, number
of target, total number of targets, amplitude, standard
deviation, energy, and the range between the sensor and
the object.

The gridded image in Fig. 1 reveals subtle differences
in the three parameters extracted from the waveform in
various feature types. The standard deviation is also
referred to in the pulse width of the Gaussian waveform,
and it reflects structural differences in the interaction of
transmitted pulses with targets. Thus, the pulse width
image shows that the width is higher for woody vege-
tation compared with grass and buildings because trees
generally have more complex spatial structures. How-
ever, amplitude and energy are lower for trees because of

Fig. 1. Parameters extracted from full-waveform data col-
lected over parts of the study area. (a) Average Gaussian
standard deviation, (b) mean value of Gaussian amplitude,
(c) average Gaussian energy (bright values indicate higher
values and low values are dark), and (d) false color composite
of a, b and c in RGB color.
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the laser energy scattering by multiple layers of trees and
lower reflectivity compared with other land-cover types.

Equation (4) was adopted to calibrate the data.
The correction factors at the minimum correlation
coefficients of the three flight lines are 2.01, 2.03, and
2.08, respectively, which are close to the properties of
the extended targets. To assess the calibrated result, the
roofs of buildings made from the same material in the
study area were selected and used to avoid the effect
of different materials in the waveform data. The three
strips cover 15, 14, and 9 buildings, respectively. The
precalibrated amplitude and energy of the roofs decrease
with increasing distance, thus suggesting that precor-
rected data have a higher relativity with the range than
post-calibrated data (Fig. 2). Table 2 indicates that the
calibrated data deliver an essentially smaller standard
deviation in one flight and that calibrated mean values
are closer to each other compared with non-calibrated
mean values for different flight paths.

Four combination groups were generated to classify
different objects and to evaluate the effect of calibrated
and uncalibrated data, first return, and all returns to
classification accuracy. Training and validation sam-
ples are shown in Table 3. The classification result of
the partial trial plot using the hierarchical method is
shown in Fig. 3. Overall classification accuracy, kappa
coefficient, producer’s accuracy, and user’s accuracy of
the classification results are listed in Table 4. After
the comparison of the two classification methods, the
total accuracy of the hierarchical classification is deter-
mined to be generally better than the corresponding band
combination of the normal SVM approach, particularly
for tree-species identification, producer’s accuracy, and
user’s accuracy of conifer and broad-leaf trees. Based
on Table 4, the classification accuracy of the relative
calibrated data increases steadily compared with the un-
corrected data. Thus, the improvement of the overall
classification accuracy is from 1.2% (comparing 80.52%
of the band combination of 1, 2, and 3 with 81.72% of

Table 2. Averages and Standard Deviations of
Pre-calibrated and Post-Calibrated Amplitude and

Energy

Flight Amplitude Energy

Pre c Post c Pre c Post c

1 Mean 24.42 21.23 126.04 113.68

Std 3.30 2.69 11.14 9.29

2 Mean 23.20 21.35 122.13 115.04

Std 3.50 2.01 13.3 11.63

3 Mean 17.97 20.81 106.17 118.42

Std 4.38 2.98 15.2 9.59

Table 3. Training and Validation Samples in
Classification

Classes Grass Non-vegetation Conifer Deciduous

Training Samples 342 267 693 589

Validation Samples 684 533 1 397 1 178

Sum 1 026 800 2 080 1 767

Fig. 2. Profile of pre-calibrated and post-calibrated roofs re-
sults with distance.

Fig. 3. (a) CCD images of part study area and (b) clas-
sification result of hierarchical SVM method with bands of
6, 9, and 10.

the band combination of 3, 4, and 5 using the normal
SVM method) to 6.4% (comparing 79.33% of the band
combination of 6, 7, and 8 with 85.77% of the band com-
bination of 6, 9, and 10 using the normal SVM method).
Table 4 also shows that the recognition accuracy for
grassland and non-vegetated area is superior to that of
the tree species, and that the recognition accuracy for
broad-leaf trees is the lowest in the four land-cover types.

This research addresses the effect of relative radiomet-
ric correction on the accuracy of classifying land-cover
types. A scheme for hierarchical classification usually
used in optical remote sensing is also introduced for
identifying LiDAR data. This method is an effective
means of improving classification accuracy.

Although the calibration approach achieves relatively
effective results for object classification, a number of
problems are still worthy of further study. Firstly, rela-
tive calibration is determined based on the assumption
that the surface is a Lambertian reflector without consid-
ering the effect of the incidence angle. Moreover, several
differences among natural objects are present. The in-
cidence angles of flights 1 and 2 are similar to each
other. However, a certain distance exists from flight 3 to
the other two flights, and the incidence angles are also
different, thus leading to a number of small differences in
the calibration results between strips 1, 2, and 3. There-
fore, the incidence angle may also be an important factor
for calibrating small-footprint waveform data. Secondly,
the highest accuracy is found in the band combina-
tion with the first return information. This result may
be attributed to the first return signal being primarily
reflected by the upper-layer information in a footprint
and may be better suited in satisfying the requirements
of surface classification. However, this process may
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Table 4. Classification Accuracy of Different Band Combinations and Methods

Normal SVM
Band Class

1-2-3 3-4-5 6-7-8 6-9-10

Prod Acc User Acc Prod Acc User Acc Prod Acc User Acc Prod Acc User Acc

Grass 90.98 93.17 85.88 78.49 89.02 93.03 87.06 92.89

Non-vegetation 98.46 94.40 84.92 96.17 98.77 91.98 98.15 87.64

Needle-Leaf 66.30 78.32 81.64 83.47 66.85 76.73 83.84 84.76

Broad-Leaf 69.97 60.66 75.08 70.15 65.81 59.37 74.12 78.91

Total Overall Acc = Overall Acc = Overall Acc = Overall Acc =

80.52% 81.72% 79.33% 85.77%

Kappa Coe = 0.7395 Kappa Coe = 0.7554 Kappa Coe = 0.7233 Kappa Coe = 0.8091

Hierarchical SVM
Band Class

1-2-3 3-4-5 6-7-8 6-9-10

Prod Acc User Acc Prod Acc User Acc Prod Acc User Acc Prod Acc User Acc

Grass 96.08 90.07 96.08 90.07 96.08 90.07 96.08 90.07

Non-vegetation 99.38 92.02 99.38 92.02 99.38 92.02 99.38 92.02

Needle-Leaf 78.71 77.25 84.66 85.83 78.08 74.61 87.40 84.62

Broad-Leaf 67.89 72.76 70.93 80.73 56.23 69.57 72.69 83.33

Total Overall Acc = Overall Acc = Overall Acc = Overall Acc =

82.18% 87.36% 81.80% 87.6%

Kappa Coe = 0.7622 Kappa Coe = 0.8307 Kappa Coe = 0.7560 Kappa Coe = 0.8338

cause the misclassification phenomenon of non-first-
return points and may not fundamentally address the
effect of multiple echoes to the return waveform. En-
hancing the comparability of multiple echoes and single
echo requires an in-depth mechanistic research on Li-
DAR. That is, current waveform data correction theory
is not perfect, and a unified standard has not been de-
veloped yet.

A 4-m2 pane is introduced to raster the data, thus
leading to a surface classification result. The grid clas-
sification results can construct point cloud types and
reduce the degree of fragmentation; however, a mis-
classification phenomenon may occur in several areas.
Meanwhile, the last return (as the presumed ground)
is not involved in calculating grid value. These issues
should be addressed in the process of transforming grid
classification into point cloud types in future research.

The overall results show that the parameters acquired
from waveform can distinguish grassland, non-vegetated
area, needle-leaf trees, and broad-leaf trees without eleva-
tion or geometric information. The following important
aspects can be concluded.

Compared with point ground data from the system,
waveform Gaussian decomposition increases spatial point
density and provides additional attributes for the de-
tected points.

Calibrating full-waveform data is necessary before they
can be applied in object classification. The parameters
of the groups of corrected data improve classification ac-
curacy by an additional 1.2% to 6.4% compared with un-
calibrated data. Such improvement is primarily reflected
in identifying needle-leaf and broad-leaf trees, which will
promote the use of waveform data in forestry applica-

tions.
The layered classification method is useful in reform-

ing classification accuracy. This result is primarily at-
tributed to the fact that the three studied parameters are
clearly different for forest and non-forest areas. There-
fore, the total accuracy for adopting any supervised
or unsupervised method can reach 95% to 98%, thus
effectively avoiding confusion between these two cate-
gories.

This work was supported by the National “863” Pro-
gram of China (No. 2012AA12A306) and the National
Natural Science Foundation of China (No. 41071272).
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